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Frequency-resolved nonlinear internal and kinetic energy transfer rates have been measured in the
Controlled Shear Decorrelation Experiment �CSDX� linear plasma device using a recently
developed technique �Xu et al., Phys. Plasmas 16, 042312 �2009��. The results clearly show a net
kinetic energy transfer into the zonal flow frequency region, consistent with previous time-domain
observations of turbulence-driven shear flows �Tynan et al., Plasma Phys. Controlled Fusion 48,
S51 �2006��. The experimentally measured dispersion relation has been used to map the
frequency-resolved energy transfer rates into the wave number domain, which shows that the shear
flow drive comes from midrange �k��S�0.3� drift fluctuations, and the strongest flow drive comes
from k��S�1 fluctuations. Linear growth rates have been inferred from a linearized Hasegawa–
Wakatani model �Hasegawa et al., Phys. Fluids 22, 2122 �1979��, which indicates that the m=0
mode is linearly stable and the m=1–10 modes �corresponding to k��S�0.3� are linearly unstable
for the n=1 and n=2 radial eigenmodes. This is consistent with our energy transfer
measurements. © 2010 American Institute of Physics.
�doi:10.1063/1.3325397�

I. INTRODUCTION

Turbulent nonlinear energy transfer is important since it
is directly related to questions of how plasma fluctuation
energy is redistributed and how large scale structures, e.g.,
zonal flows are formed. Great efforts1–7 have been put into
this issue ever since Ritz et al.8 experimentally measured the
nonlinear energy transfer using a one-field model. Because it
is difficult to measure plasma potential in large tokamaks
�especially when a large number of spatial channels are
needed� linear plasma machines become ideal devices to
study the nonlinear dynamics involving turbulence and shear
flows. Earlier work9 in the Controlled Shear Decorrelation
Experiment �CSDX� device suggested that turbulent energy
is nonlinearly coupled to the linearly stable low k� zonal flow
region, and further time-domain investigations by Tynan et
al.2 and Holland et al.3 provided direct experimental support
for the drift-turbulence-driven mechanism of zonal flows in
this plasma. In that work, the experimentally measured Rey-
nolds stress was used in a turbulent azimuthal momentum
conservation analysis, which produced a time-averaged azi-
muthal velocity profile that agrees reasonably well with ex-
perimental measurements. The dynamic interplay between
zonal flows and drift turbulence has also been studied in
detail by Yan et al.,10 which showed that a slow variation in
the shear flow is accompanied by a corresponding variation
in the Reynolds stress.

In this paper we report the results from a direct nonlinear
energy transfer measurement based on a newly developed
technique,1 which gives a frequency domain measurement of
the nonlinear convective terms in the continuity and momen-
tum equations. These measured nonlinear energy transfer

rates were then mapped into the azimuthal wave number do-
main using experimentally measured dispersion relation. The
results show clearly a net energy transfer from the linearly
unstable drift wave turbulence region with intermediate fre-
quencies to both low frequency and high frequency regions.
A comparison to linear stability of drift waves is also re-
ported here. The content of this paper is deeply related to the
issue of turbulent transport in magnetically confined fusion
as seen in Refs. 11–16.

The structure of this paper is arranged as the following:
Sec. II is a description of the experimental setup; Sec. III
shows the detailed nonlinear energy transfer measurement;
Sec. IV shows results from the linear eigenmode analysis;
and finally Sec. V gives a summary and some discussions.

II. EXPERIMENTAL SETUP

As discussed in our earlier work,1 by Fourier transform-
ing momentum and continuity equations, ensemble-averaged
energy transport equations for the spectra of density and po-
tential fluctuations can be derived in frequency domain,
where the internal and kinetic energy transfer rates come
from convective derivatives u� ·�n and u� ·�u� , and are defined,
respectively, as

Tn�f , f1� � − Re�nf
��u��f2

· ���nf1
�

= − Re�nf
��ẑ � ��� f2

· ���nf1
� , �1�
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Tu�f , f1� � − Re�u��f
� · �u��f2

· ��u��f1
��

= − Re��ẑ � ��� f
�� · ��ẑ � ��� f2

· ���

�ẑ � ��� f1
��� , �2�

where � � denotes the ensemble average, the asterisk denotes
the complex conjugate and � denotes the plane perpendicu-

lar to the magnetic field. The velocity u�� is the E� �B� veloc-
ity defined as u��� ẑ���� and f � f1+ f2. From earlier
work, we know that a positive �negative� Tn�f , f1� or Tu�f , f1�
means that fluctuations at the frequency f gain �lose� energy
from �to� frequencies f1 and f2 through three-wave coupling.
In order to determine these two terms, the plasma density
fluctuations ñ and their first derivative ��ñ, as well as the
potential fluctuations �̃ and their first and second derivatives
���̃ and ��

2 �̃ need to be experimentally measured. These
measurements were performed with a dual 3�3 probe array
centered at the same radial location.1 These quantities were
then Fourier transformed into the frequency domain to com-
pute the corresponding convolutions and finally ensemble-
averaged over a sufficient number of realizations to reach
statistically converged bispectra.

The experiments were carried out on a cylindrical
plasma machine CSDX at the University of California, San
Diego. This machine is 3 m long with a vacuum chamber
radius of 10 cm. The magnetic field is produced by a series
of solenoidal coils and can be continuously adjusted from 0
up to 1000 G. The plasma in this machine is produced by an
m=0 half-wavelength helicon plasma source operating at
13.56 MHz, which produces an on-axis argon plasma density
of 	1013 cm−3 and an on-axis electron temperature of
	3 eV when operated at a pressure of 3.0 mTorr, magnetic
field 1000 G, and rf source power 1.5 kW. More details about
this machine and its basic plasma profiles, the transition to a
state of weak turbulence, as well as the time-domain
turbulence-driven shear flow studies on this machine can be
found elsewhere.2,9

The dual 3�3 Langmiur probe array was installed at z
=75 cm �here z=0 is defined as the interface between the
source bell jar and the vacuum chamber� on this machine
which enables the simultaneous measurement of plasma den-
sity and potential fluctuations and their corresponding first
and second derivatives in both radial and azimuthal direc-
tions. The output analog signals from the probe array are
simultaneously sampled and stored at a high time resolution
�500 kHz�.The measurement circuits have sufficiently high
bandwidth such that for the drift turbulence signals
��25 kHz� the phase shifts introduced by the circuits are
negligibly small ��0.5°�. The 3�3 array for density chan-
nels and the 3�3 array for potential channels were centered
at the same spatial point in both azimuthal and radial direc-
tions, but shifted by 1.5 mm along the magnetic field line.
Since the turbulent correlation length along magnetic field
line is much larger than 1.5 mm, the resulting phase shifts
are also negligible. The machine runs in a steady state, which
makes the measurement of long time sequences possible to
achieve statistically converged bispectra.

III. EXPERIMENTAL RESULTS

For convenience the basic profiles such as plasma den-
sity, potential, particle flux, etc., for the CSDX plasma have
been reproduced here in Fig. 1. For more details about those
profiles please refer to a former paper.17

The results shown here were measured at the plasma
discharge condition: argon gas pressure 3.2 mtorr, B field
1000 G, and rf power 1.5 kW with reflected power less than
20 W, in order to allow direct comparison to previously pub-
lished time-domain results.2,3,10,17,18 As we can see from the
spectra in Figs. 2�a�–2�c�, the plasma at this condition is in a
weak turbulent state, in which the fluctuations have a signifi-
cant degree of frequency broadening but still reasonably fol-
low the linear dispersion relation �see Figs. 6�a� and 6�b��
with coherent modes coexisting with turbulent flows. Both
the density and potential spectra peak at around 5 and
10 kHz, which have been identified as m�0 collisional drift
waves.9 The potential and azimuthal velocity spectra also
exhibit peaks at very low frequencies ��1–2 kHz�. These
low frequency fluctuations are due to the slow evolution of
the m=0 radially sheared flows.10 The spectra of density and
potential fluctuations are significantly different, and their
cross correlation is significantly less than unity.1 In particular
we note that there is a peak at 2.5 kHz in density spectrum
�Fig. 2�a�� but not in the potential spectrum �Fig. 2�b��.

The nonlinear internal and kinetic energy transfer rates
Tn�f , f1� and Tu�f , f1�, shown by Eqs. �1� and �2�, have been
measured using a dual 3�3 probe array at argon pressure
3.2 mTorr and magnetic field 1000 G. The probe array was

FIG. 1. �Color online� Equilibrium radial profiles for CSDX. �a� Time-
averaged density �solid black� and RMS of density fluctuation �light gray/
solid red�. �b� Time-averaged turbulent particle flux. �c� Time-averaged Rey-
nolds stress. �d� Estimated ion viscosity. �e� Plasma azimuthal velocity.
�Reprinted with permission from Z. Yan, J. H. Yu, C. Holland, M. Xu, S. H.
Muller, and G. R. Tynan, Phys. Plasmas 15, 092309 �2008�. Copyright
©2008, American Institute of Physics.�
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centered at r=3.6 cm, which lies at the inner radius of the
shear layer �Fig. 1�e��. About 5�106 sampling points on
each channel were divided into roughly 1200 independent
realizations to perform the bispectral calculation with good
frequency resolution ��f 	120 Hz�. It has been shown
elsewhere1 that both Tn�f , f1� and Tu�f , f1� will reasonably
converge once the number of realizations reaches 	1000.
For convenience, figures from that earlier paper showing the
two-dimensional Tn�f , f1� and Tu�f , f1� at this discharge con-
dition are reproduced and shown here in Fig. 3, where the
positive peak at f =0.3 kHz and f1=10 kHz in Fig. 3�b�
clearly indicates that slowly varying zonal flows are coupled
to drift wave turbulence and gain kinetic energy from
	10 kHz drift wave turbulences through three-wave cou-
pling.

If we sum Tn�f , f1� over the frequency f1, we find the net
internal energy transfer rate for the frequency f , i.e., Tn�f�
=
 f1

Tn�f , f1�, which gives the total net internal energy trans-
fer into �or out of� frequency f from all other frequencies.
Figures 4�a� and 4�b� show the net internal energy transfer
and the net kinetic energy transfer respectively. Here a nega-
tive value means that frequency f is losing energy and a
positive value means that it is gaining energy. We can clearly

see that the drift turbulence region �which corresponds to
several kilohertz to 	12 kHz �Ref. 9�� loses internal and
kinetic energy to both low and high frequencies. The large
positive peak in the low frequency region �f �2 kHz� in Fig.
4�b�, which has been shown to correspond to m=0 zonal
flows �see Fig. 2�b��, gain net kinetic energy, while the large
negative peak at f 	10 kHz shows that fluctuation at this
frequency loses kinetic energy. An examination of Tu�f , f1�
in Fig. 3�b� shows that the nonlinear zonal flow drive is
dominated by the transfer of energy from these 10 kHz drift
fluctuations. It can be inferred that the strongest flow drive
comes from k��S�1 fluctuations since the 10 kHz fluctua-

FIG. 2. �Color online� Typical autospectra �a� density, �b� potential, and �c�
perpendicular velocity for the weakly turbulent plasmas in CSDX. Measure-
ment was taken at argon pressure 3.2 mTorr, magnetic field 1000 G, and rf
power 1.5 kW by the dual 3�3 Langmuir probe array centered at the radial
position r=3.6 cm.
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FIG. 3. �Color online� The experimentally measured nonlinear energy trans-
fer rates. �a� Internal energy transfer. �b� Kinetic energy transfer. �Reprinted
with permission from M. Xu, G. R. Tynan, C. Holland, Z. Yan, S. H. Muller,
and J. H. Yu, Phys. Plasmas 16, 042312 �2009�. Copyright ©2009 American
Institute of Physics.� In both figures positive �negative� values correspond to
a positive �negative� energy transfer to either density or perpendicular ve-
locity fluctuations. Several prominent frequency triplets �f , f1 , f2� are
highlighted.

FIG. 4. �Color online� Net energy transfer rates �a� internal and �b� kinetic.
Here a positive value at one specific frequency means that density �or per-
pendicular velocity� fluctuation at this frequency gains energy, while a nega-
tive value means losing energy.
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tions can be mapped to an m=3 mode using the experimen-
tally measured dispersion relation in Fig. 6�b�, and for the
m=3 mode k�=m /r	0.8 cm−1 and �s	1 cm.

Since the total normalized fluctuation energy in the sys-
tem can be defined as Etotal��ñ�f��2+ �ũ��f��2 and the internal
and kinetic energy transfer rates quantitatively indicate the
amount of energy redistributed among different frequencies
through nonlinear processes, it is useful to sum the internal
and kinetic energy transfer rates to get a net rate of the total
fluctuation energy transfer, Ttotal�f��Tn�f�+Tu�f�. The
bispectral results show that generally the magnitude of ki-
netic energy transfer rate is at least a factor of 5 bigger than
that of the internal energy transfer rate. With Figs. 4�a� and
4�b� this means that the total energy transfer rate follows the
kinetic energy transfer rate and the bulk of the total fluctua-
tion energy is nonlinearly transferred to low frequency zonal
flow region. This could be understood by noting that the total
fluctuation energy can be rewritten as

Etotal 	 �
 ñ�r�
n0�r�


2

+ k�
2 �s

2
 �̃�r�
kBTe0�r�


2� ,

and in our experiment �s=Cs /	ci	1 cm. At the shear layer
for the m=3 mode k�=m /r	0.8 cm−1 and kr
k� since the
measured turbulence correlation length in azimuthal direc-
tion is roughly a factor of 3 higher than the turbulence cor-
relation length in radial direction at the shear region.17 We
thus estimate that k��s	3. In our experiment the locally
normalized density and potential fluctuations are about the
same magnitude, i.e,


 ñ�r�
n0�r�


 	 
 �̃�r�
kBTe0�r�


 .

Combining the above we then find that the kinetic fluctuation
energy is roughly a factor of 10 higher than the density fluc-
tuation energy. This is consistent with the measured results
showing that the nonlinear kinetic energy transfer rate is
much bigger than the internal energy transfer rate.

From Eqs. �1� and �2�, we can see that the internal and
kinetic energy transfer terms can both be divided into parts.
For example Tu�f , f1� is comprised of four different parts
−Re�uy,f

� ux,f2
��uy,f1

/�x��, −Re�uy,f
� uy,f2

��uy,f1
/�y��,

−Re�ux,f
� ux,f2

��uy,f1
/�y��, and −Re�ux,f

� uy,f2
��ux,f1

/�y��. A
similar set of expressions can be written for Tn�f , f1�. By
calculating each part separately and summing the resulting
bispectra over f1, the contribution from each part to the total
net energy transfer rate can be found. The results of this
calculation are shown in Figs. 5�a� and 5�b�. The net internal
energy transfer �Fig. 5�a�� shows that the term
−Re�nf

�ux,f2
��nf1

/�x�� �red dash� closely follows the total in-
ternal energy transfer �solid black line�, while the term
−Re�nf

�uy,f2
��nf1

/�y�� �blue dot� is much smaller. This means
that the term −Re�nf

�ux,f2
��nf1

/�x�� �corresponding to a radi-

ally directed E� �B� velocity interacting with a radial density
gradient� is the major player for redistributing internal en-
ergy among different frequencies via nonlinear wave-wave
coupling.

We can also see in Fig. 5�b� that the term
−Re�uy,f

� ux,f2
��uy,f1

/�x�� dominates the net kinetic energy
transfer. Because �ũy�t� /�x is the azimuthal flow shearing
rate, it is clear that the slowly varying azimuthal velocity
oscillations uy�f� at f =200–300 Hz gains energy due to the
interaction between ũx�t� at frequency f2= f − f1 and the azi-
muthal shearing rate at frequency f1. By noting that vorticity
can be written as

��
2 ��t� =

�2��t�
�x2 +

�2��t�
�y2 ,

and that


 �2�̃�t�
�x2 
 
 
 �2�̃�t�

�y2 
 ,

in our experiments, we can take �2�̃�t� /�x2 approximately to
be vorticity, and hence ũx�t���ũy�t� /�x�= ũx�t���2�̃�t� /�x2�
� ũx�t���

2 �̃�t� is approximately the instantaneous radial flux
of vorticity. This result then suggests that one can also view
the shear flow as being generated by a flux of vorticity which
accumulates at the shear layer and reinforces or amplifies the
shear flow. By noting that, for divergence-free flows such as

E� �B� drifts, we can write ��ũxũy� /�x= �ũx�̃z�, where �̃z

���� ũ�z is the vorticity of the fluctuating velocity in the
x-y plane;19,20 this interpretation can be seen to be entirely
consistent with the results of Holland et al.,3 which showed
that the time-averaged Reynolds stress was consistent with
the observed shear flow profile and estimated damping pro-
cesses. The results here show that the transient vorticity flux
ũx�t���2�̃�t� /�x2� is responsible for the transfer of turbulent

FIG. 5. �Color online� �a� Contributions to the net internal energy transfer
rate due to −Re�nf

�ux,f2
��nf1

/�x�� �red dash� and −Re�nf
�uy,f2

��nf1
/�y�� �blue

dot�. The total value is indicated by the solid black line. �b� Contributions to
the net kinetic energy transfer rate due to −Re�uy,f

� ux,f2
��uy,f1

/�x�� �red long
dash�, −Re�uy,f

� uy,f2
��uy,f1

/�y�� �purple short dash�, −Re�ux,f
� ux,f2

��uy,f1
/�y��

�blue dot�, and −Re�ux,f
� uy,f2

��ux,f1
/�y�� �orange dash dot�.The total kinetic

energy transfer rate is indicated by the solid black line.
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energy in frequency space, and specifically is responsible for
the transfer of turbulent momentum with higher frequency
into shear flows with lower frequency at the shear layer. This
result provides a consistent and complementary picture of
the fluctuations drive mechanism of shear flows to the earlier
time-domain picture which attributes the shear flow drive to
an accumulation of turbulent momentum within the shear
layer.

IV. LINEAR STABILITY ANALYSIS WITH COMPARISON
TO EXPERIMENT

The idea that �usually linearly� unstable modes release
free energy into finite amplitude fluctuations, and the energy
of these fluctuations is then nonlinearly transferred into
stable fluctuations is assumed in nearly all turbulence models
�see e.g., the Hasegawa–Wakatani collisional drift-wave
model21�. We can compare our results with linear stability
analysis in order to provide a test of this model. We proceed
by first assuming that the equilibrium density is of Gaussian
form n0�r�=n0 exp�−0.5�r /Ln�2� �which is close to the profile
shown in Fig. 1�a��.With this profile in the linearized
Hasegawa–Wakatani collisional drift turbulence model
�thought to be appropriate for this experiment� in a cylindri-
cal geometry, we find the linear dispersion relation

− ikmn
2 �mn

2 + ����1 + kmn
2 � + �k��mn − ���m

�s

Ln
− i�k� = 0.

�3�

Here kmn is the effective radial wave number denoted by
kmn=Xmn /a, where Xmn is the nth zero of Jm�x� and a is the
radius of the plasma cylinder. �� =k�

2vTe
2 /�ei is the parallel

electron adiabatic parameter �assumed constant here� and
�k= ��i−n+
iikmn

2 �kmn
2 is a dimensionless measure of perpen-

dicular dissipation due to the combined effect of the ion-
neutral collision frequency �i−n and the ion-ion collisional
viscosity. More details about this calculation can be found
elsewhere.22 By using typical CSDX parameters for the
1000 G case with an average electron temperature Te

	2.0 eV, density gradient scale length Ln	2.5 cm, plasma
radius a=10.0 cm, an average ion neutral collision rate
�i−n	6.0 kHz, and an average ion collisional viscosity 
ii

	2.0�104 cm2 /s,3 we can solve the complex eigenfrequen-
cies �mn from the linear dispersion relation and thus find the
real frequencies and the growth rates for each eigenmode.

The Doppler shift introduced by the mean E� �B� flow asso-
ciated with the azimuthal flow has been taken into account
by adding a frequency shift given by k��V��, where the value
of �V�� measured by a Mach probe18 was used. This Doppler
shifted frequency �mn �real part� for n=1 is shown as the
black dashed line in Fig. 6�a�, where the calculated disper-
sion agrees well with the experimentally measured disper-
sion relation at the strong density gradient region. Note that
in these figures the effective azimuthal mode number, meff, is
a continuous variable defined as meff=k�r.

By using two azimuthally separated Langmuir probes,
the spectrum S�f ,k�� can be measured and a mapping be-
tween frequencies and azimuthal mode numbers can be
established.23 Figure 6�a� shows the two-point k-spectrum

measured at r=2.6 cm at the strong density gradient region,
where the x-axis is the azimuthal mode number and the
y-axis is frequency. Figure 6�b� is the dispersion relation
measured at r=3.6 cm at the maximum shear region. We can
see that the spectrum exhibits strong dispersion for m�3,
and several azimuthal mode numbers m	3–6 are degener-
ate with frequency f 	10 kHz. It is interesting to note that
the strong nonlinear interaction of these degenerate fluctua-
tions is what leads to the very low frequency �f
	200–300 Hz� m=0 sheared flow fluctuation �shown in
Fig. 2�; this observation may be the m=0 limit of the more
general nonlinear convective cell generation mechanism dis-
cussed by Shukla.24

With the experimentally measured k-spectrum in

FIG. 6. �Color online� Two-point spectrum S�f ,k�� from potential �with the
intensity in log scale�. �a� Dispersion measured at r=2.6 cm �strong density
gradient region� and the black dashed line is for the real part of the linear
eigenmode frequencies of the first radial eignemode branch �n=1� calcu-
lated from the linear dispersion relation Eq. �3� with Doppler shift accounted
�using typical CSDX parameters Te	2.0 eV, Ln	2.5 cm, a=10.0 cm,
�i−n	6.0 kHz, and 
ii	2.0�104 cm2 /s�. The effective azimuthal mode
number is a continuous variable defined as m�k�r. �b� Dispersion measured
at r=3.6 cm �maximum shear region�, and the black solid line indicates the
weighted-average values, which were used to map the nonlinear transfer rate
in the frequency space into the wave number space.
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Fig. 6�b�, we can now map the measured energy transfer
rates from the frequency domain to the azimuthal wave num-
ber domain. To do this, for each frequency a weighted-

average value k̄��f���0
�S�f ,k��k�dk� /�0

�S�f ,k��dk� was ob-
tained by averaging over the two-point spectrum in Fig. 6�b�,
then those values for different frequencies were smoothed to
get the black solid line in Fig. 6�b�. The resulting effective

curve F�k̄�� was used to map the net energy transfer rates
into the wave number domain. Figure 7�a� shows the mapped

kinetic energy transfer rate Tu�k̄��f�� by the red solid curve

and the mapped internal energy transfer rate Tn�k̄��f�� by the
blue dashed line. The results show that the zonal flow �m
	0 mode� gains net kinetic energy while fluctuations with
m=1,2 ,3, etc. lose kinetic energy. The mapping for m�4
has large uncertainties when the mapping frequencies ap-
proach 	10 kHz due to the frequency degeneracy seen in
Fig. 6�b�. However it is still very clear from Fig. 6�b� that the
major zonal flow driving frequency range of 9–11 kHz cor-
responds to azimuthal modes m�3, implying that the kinetic
energy carried by fluctuations with higher azimuthal wave
number is nonlinearly transferred to m	0 mode where it is

�presumably� damped away through collisional processes.
The driving source for those waves with higher azimuthal
mode numbers still needs to be identified. As we show next,
the m=1–10 modes are linearly unstable thus they can tap
energy directly from density gradient; in addition they can
interact nonlinearly with each other to rearrange the energy
spectrum.

In Fig. 6�a�, the real parts of the linear eigenfrequencies
for the first radial eigenmode were plotted as the black
dashed line, which agrees well with the experimentally mea-
sured k-spectrum. The imaginary parts of the linear eigenfre-
quencies �i.e., the linear growth rates� for the first and second
radial eigenmodes were plotted in Fig. 7�c�. We find that the
m�1 modes on the n=1 and n=2 branches are both linearly
unstable. Furthermore, we note that the unstable �stable� re-
gions correspond to the regions where Tu�0 �Tu�0�, con-
sistent with expectations for a stationary spectrum estab-
lished by balancing the linear growth/decay against the
nonlinear energy transfer. To test the consistency of this
spectrum balance picture, we can lump the linear effects into
an effective linear growth/damping rate �eff

u and rewrite the
frequency-domain kinetic energy transport equation �see
Ref. 1� as

� 1

2

� �u��f�2

�t
� = Tu�f� + �eff

u �f���u��f�2� . �4�

For a time stationary plasma, the left-hand side of the Eq. �4�
is zero. By dividing the equation by ��u��f�2� we can infer an
effective linear growth/damp rate as �eff

u �f��−Tu�f� /
��u��f�2�, which can be compared to the analytically calcu-
lated linear grow rate from Eq. �3�. The red solid line in Fig.
7�b� shows the result. We note that this effective growth rate
is consistent with the linear stability analysis. The sign of �eff

u

agrees with the linear stability analysis, and the relative mag-
nitude of the unstable region, where �eff

u �0 and where
�n=1�0 and �n=2�0, is in rough agreement. However, we
also note that �eff

u for meff�0 is significantly more negative
than �n=1 and �n=2 at meff�0. This result, which is found by
balancing the time-averaged zonal flow amplitude against the
nonlinear energy transfer into the zonal flow, suggests that
some additional damping mechanism, unrelated to the damp-
ing mechanism that are contained in the linear
stability analysis, may influence the zonal flow saturation.
Additional work is required to determine if this is the case.

V. SUMMARY AND DISCUSSION

We have shown in this paper that the directly measured
nonlinear energy transfer rates for both velocity and density
fluctuations are negative at intermediate frequencies and
positive in both low and high frequency regions, indicating
that turbulent energy is nonlinearly transferred to low fre-
quency zonal flows and to regions at higher frequencies,
where the energy is then presumably dissipated. In addition,
we find that the radial flux of vorticity, equivalent to the
gradient of turbulent Reynolds stress, is dominantly respon-
sible for redistributing turbulent kinetic energy among differ-
ent frequencies �or different scales�.Thus the vorticity flux
can be thought of as having two equivalent roles: it leads to

FIG. 7. �Color online� �a� Nonlinear energy transfer rates mapped from
frequency domain to wave number domain using the experimentally mea-
sured k-spectrum S�f ,k�� presented in Fig. 6�b�. The red solid line is for
Tu�m� and the blue dashed line is for Tn�m�. �b� Effective growth rates
inferred from the nonlinear net energy transfer rates. The red solid line is for
�eff

u and the blue dashed line is for �eff
n . �c� Linear growth rates from

Hasegawa–wakatani model. The red solid line is the growth rate of the first
linear radial eigenmode n=1, �n=1, and the blue dashed line is for the second
radial eigenmode n=2, �n=2.
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the transport of momentum in configuration space and to the
spreading of energy among different spatiotemporal scales in
the Fourier domain.

We also compared the net nonlinear transfer results
against a linear eigenmode calculation based on the
Hasegawa–Wakatani model. Despite the use of very simpli-
fied profiles �flat electron temperature, ion viscosity profiles,
etc.�, the comparison shows that the linearly unstable fluc-
tuations correspond to the regions where the nonlinear trans-
fer leads to a loss of energy. Conversely, the linearly stable
fluctuations correspond to regions that receive nonlinearly
transferred energy. Linear analysis also shows that m�1
modes of the first two radial eigenmodes n=1 and n=2 are
unstable at the typical CSDX condition, suggesting that these
two radial eigenmodes could play a role in driving the zonal
flows.

The observation that zonal flows are driven predomi-
nantly by the radial flux of vorticity, combined with the ob-
servation that the shear layer is spatially separated from the
strong gradient region �which presumably is where drift fluc-
tuations originate� suggests a picture, where drift fluctuations
with finite vorticity are generated at one location and then
propagate outward and then interact with and reinforce a
pre-existing shear layer. We are currently investigating this
possibility, and will report the results in a subsequent paper.
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